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Bpol poloidal magnetic field

BT toroidal magnetic field

BV vertical magnetic field
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db thickness of single-bellows shell sector

dbu equivalent thickness of bellows sector in toroidal direction
dbv equivalent thickness of bellows sector in poloidal direction
4 length of poloidal vessel circumference

[E real toroidal length of single bellows

fbs toroidal length of bellows sector

N number of bellows and shell sectors

(1 resistivity

/3 decay time of plasma current

T time constant of poloidal eddy currents

o time constant of toroidal "monopole" current
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time constant of toroidal "dipole" current
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. Introduction

To investigate the physical properties of a mainly & - particle-heated plasma, an ignition
experiment, called Zephyr, is now under investigation at Garching. It is intended to reach
ignition conditions by adiabatic compression of a plasma, preheated ohmically and by neutral

injection.

The vacuum vessel of the Zephyr experiment has to be developed with due regard for critical
boundary conditions not yet encountered together in any plasma experiment under construction
(see Tablel ). It has to withstand severe thermal and electromagnetic loads, must not disturb
the vertical field during adiabatic compression and has to meet tritium safety requirements
while the distance between the toroidal field coil and the plasma edge at the vessel throat

is kept as low as possible, in the range of 10 cm. Activating of the structure requires

maintenance and repair under remote handling conditions.

It became clear during the design study of the vacuum vessel that an all-metal configuration
without poloidal insulating gaps, separated from the toroidal field coils, would be the best
solution, provided that the type-wound- coil for the TF magnet is chosen. The concept of

a thick vessel with insulating gaps was first investigated /1/, but it was not possible to

find any insulating material capable of withstanding the large forces across the gap, caused
by plasma disruptions. Based on that concept, the vacuum vessel is composed of double-
walled bellows and thick shell sections of elliptical shape (Fig. 1). A sufficiently high
toroidal electrical resistance is imposed by the bellows, which allow toroidal movements
due to temperature variations. The shell sections, linked to the TF magnet, form the
supporting structure and incorporate the ports for neutral injection, pumping and diagnostics.
A thin-walled vessel without thick shell sections entails problems with the large openings

for neutral injection and needs a lot of connections with the cases of the TF coils.




Eddy currents, induced in the vessel wall by transient magnetic fluxes, exert large
forces on the vessel by interacting with the magnetic fields, mainly with the stationary
toroidal magnetic field. Especially the electromagnetic forces, caused by a hard plasma

disruption of the compressed plasma have a major influence on the vessel design.

It is therefore necessary to calculate these forces for a variety of different geometries of
the chosen vessel concept, e.g. for different plasma aspect ratios A, during the design

phase of the vessel for deriving scaling laws. The methods mostly used to determine eddy
current distributions are either analytical calculations, which are not accurate for such a

complicated structure, or extensive FE calculations.

A numerical-analytical computation method was therefore developed, yielding sufficiently
accurate results for a limited outlay. Recent calculations with a FE code /2/ show good agree-

ment with the results of the described calculation method.

This report first describes in Sec. |l the features of the current eigenmodes in the vessel.

The most important modes caused by hard disruption of the plasma current, are derived

in Sec. Ill from these results. The method of calculating these modes is then represented
and results for the two plasma aspect ratios A= 2.7 and A = 3.5 are compared. Simple
scaling laws, describing the variation of the electromagnetic forces with the aspect ratio
of the compressed plasma, are described in Sec. |V. The resulting electromagnetic forces
are then used as input for the stress analysis of the vacuum vessel using a finite element

program. The results are discussed in Sec. V.

Il. Eddy Currents on the Vacuum Vessel

The eddy currents on the vacuum vessel are calculated, assuming that the vessel can be
represented as a thin shell, e.g. no current flows in the direction normal to the vessel
surface. This assumption is justified since any radius of curvature of the vessel is much

larger than the wall thickness.




Any shape of vessel surface can then be described by a two-dimensional orthogonal

system of coordinates (i, 1) which is related to a Cartesian system of coordinates

Xi=X{u, ) i=1,2,3 Q)]
The surface current density ) can be written in the form
g . —
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The surface current density is divergence-free
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and can therefore be represented by a scalar current potential V (u,v ) /3/
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Any eddy current distribution on the vessel surface can be represented by a series of

orthogonal eigenmodes
oO —
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The coefficients cn(f) are time independent, when no coupling between the vessel




and other conductors exists.
—

Each eigenmode J(u v)ean be derived from the energy balance equation on the
n"

vessel surface
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The magnetic energy of the eddy currents on the vessel is described by a surface integral
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On the bellows sectors, the resistivity becomes a symmetrical matrix.

Inserting egs. (2), (10) and (9) in eq. (8) yields a system of two coupled, homogeneous
integral equations of the Fredholm type
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By multiplying eq. (12) by Jan[7)and integrating over the vessel surface with index 1,
it can be shown that the eigenvalues /{n are real and negative. Using the same scalar
products for two different eigenmodes with index m and n, it can be shown that the

eigenmodes are normalized by

. (14)
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The eigenmodes are therefore energetically decoupled and are given by

i I At
L uvt)= ) (u,v) e (15)
The symmetry properties of the vessel are valid for the eigenmodes, too. They are
symmetrical to the meridian plane of the vessel and to the vertical symmetry planes of
each shell and bellows sector, while the toroidal periodicity is given by A= 277'//‘/

(N = number of bellows or shell sectors).

I1l. Eigenmodes and Electromagnetic Loads Induced by Hard Plasma Disruption

The most critical electromagnetic loads on the vessel, far exceeding the atmospheric
pressure, are induced by hard disruption of the compressed plasma. Very little is known
about the time behaviour of the plasma current during its decay interval. But it seems
that inside a vacuum vessel with a copper shell most hard disruptions occur during a time
interval of several milliseconds (Pulsator, FT-tokamak), while the number of disruptions

with durrent decay time shorter than one millisecond increases for vessels without copper

shell.

In both cases, the vessels must be able to withstand a hard disruption with a current decay
time much shorter than the toroidal and poloidal vessel time constants, e.g. nearly the

entire plasma current then appears in the vessel wall.

For this worst case, the most important eigenmodes were determined and the electromagnetic
loads derived from these were used as the critical input parameters for the stress analysis

of the vacuum vessels for different plasma aspect ratios. In any case, only double-walled




vessels were considered.

Denoting the toroidal coordinate on the vessel surface with 14 and the poloidal one
with v, the following important eigenmodes for an idealized vessel (Fig. 2) can be

distinguished after a hard plasma disruption, fulfilling the conditions

T T T 0
e , -E -
y g ot)cj lv) e e, (17)

caused by the diamagnetic plasma
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induced by the transient component of the poloidal magnetic field, tangentlal at the

vessel surface. This zero-order mode has to meet the condition

Q—)‘* =r
ﬁ ‘L{"ls ﬁf J s = at the vessel surface ,
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induced by the transient component of the poloidal magnetic field, normal to the vessel

surface.

In_each shell and bellows sector, there flow so-called saddle currents

)s ( " ~; + J:;} eu—) € 77 forming closed current loops on the upper and
lower vessel halves. They are ohmically and inductively coupled mutually and with the
dipole current }Z) E: . There may exist current modes of higher order on a vessel
surface, but they can be neglected for the chosen vessel concept (Fig. 1) for a hard

disruption in the compressed plasma state under the conditions (16), as is shown later.



a) Eddy Currents Induced by Transient Toroidal Magnetic Fields Caused by a

Diamagnetic Plasma

In the compressed plasma state the toroidal magnetic flux inside the vessel @'7- is smaller

than it would be without plasma since Bp > .

E 'F = vessel cross-section
< | =L AF
7 </

v
Ty Br_: % = toroidal magnetic field in the vacuum.

The negative magnetic flux difference

-~ Cq — ~
Qf_a@.’.-f——o” < U (20)
7 i L R
v
marks a diamagnetic plasma.

With the assumption To << 7, the toroidal magnetic flux Ad_= - diffuses into the vessel
after disruption, inducing large poloidal eddy currents nearly equal to the diamagnetic

plasma current.

The axisymmetric mode which is the most important one can be derived by expanding all

quantities in Fourier series of the toroidal variable

With U=y , v=U(R) (Fig. 2) the poloidal current density on the idealized vessel

can be written as

: 3 . q
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Usmg()’o’t ¢ ) Ou for the zero-order coefficients (with index 0) of the Fourier

series, the differential equation for ao(f) is given by
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The poloidal current )v— interacts with the toroidal magnetic field yielding a magnetic
pressure Pr,, normal to the vessel surface
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The diamagnetic fluxﬁ can be estimated sufficiently accurate from a cylindrical plasma

model (A=>90), as B, < 12’1

Assuming a plasma current profile

_}"(’r’) = }o (7- (%)2)2 o = plasma radius (32)

and a quadratic pressure profile

ply)= A v* (33)

~

Y
with the poloidal magnetic flux function ' (v') ’QIQB/’-‘{Y) dv , or

can be calculated by using the plasma equilibrium equation

dip A 1 Bm(v) d . (34)
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Two different vessel geometries compatible with the plasma aspect ratios A = 3.5 and

A= 2.7 (Tablell) were investigated to derive the dependence of the eddy currents and

the electromagnetic forces on A.

To calculate ar , the toroidal magnetic field on the plasma axis was inserted in eq. (35).
The results are presented in Table lll,

max
The maximum pressure load Pa,,  occurs at t = 0 at the vessel throats R = R

A= 3.5 A= 2.7

B 1.75 1.35

P 6 6

lpl 2.7x 10" A 3.6 x 10" A

B 12.37T 9.5T

) -2 -2
éT -2.8x 10 < Vs -2.9%x10°° Vs
P (as) 0.5 x 10° Pa 0.4 x 10° Pa
Table lll

Thef first-order Fourier coefficients are small with respect to the zero-order one since

—< < 1.6.
dbv

On the real vessel the eigenmodes are somewhat disturbed since the orthogonal system of
coordinates (', 77’ ) does not agree with the toroidal system of coordinates (1,7 )

71,

(Fig. 3). But in any case the values of the maximum pressure loads are still valid (T, < <7, ),

while the time constant 7; is a little changed.

If the maximum electromagnetic loads caused by the diamagnetism are used for the stress

calculations the described model forms a good basis for the vessel design.
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b) Eddy Currents Induced by Transient Poloidal Magnetic Fields

The transient poloidal magnetic fields caused by hard plasma disruption induce toroidal
and poloidal eddy current distributions on the vessel, as are described by eqs. (18) and
(19). With the conditions T; <<T, and ﬁ;« 7; the whole toroidal eddy current nearly
reaches the value of the plasma current, and the eddy current distribution is not affected

by any motion of the magnetic axis of the plasma during a disruption.

To get the worst case of electromagnetic loading of the vessel the interaction of the plasma

and the eddy currents with the outer conductors, such as the OH, VF and TF coils was

neglected; taking it into consideration would only slightly diminish the loads (7; <<7;, s

As already mentioned, the toroidal coordinates (i1,1) do not agree with the orthogonal

coordinates (', U”) for the real vessel geometry (Fig. 3). The two eigenmodes of eqs. (18)

and (19) are therefore strongly coupled, mainly ohmically by the cylindrical bellows sectors.

As the current decay time 7 is smaller than the vessel time constants the large toroidal
eddy current acts like an intrinsic current source, driving the saddle currents by the voltage

drop across the bellows sectors.

On both the shell and bellows sectors the toroidal eddy currents }‘,( can be separated into

fwo components:

f'y/’?: t)= ,y,f: (R, 1) *}Ygi//?,t) ' (38)

with
5 5 g T . (39)
Yoo (R,1) =2 Gudt) weo(2Mwm- |
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by using the relations
@ : . |
§ 1y, (RDAE = jp(R 1A 0

(the line integral being taken along the poloidal circumference, thus yielding the entire
toroidal eddy current at any moment).

and

-
. —
5’ J ) ved§ =0  on each bellows and shell surface.
¥, 0
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The components i and J’pb are different, as is shown in Fig. 7 for A = 2.7 and
7,'0 = ]0-5 s.

The modes of egs. (18) and (19) are therefore coupled together. A simple circuit model

of a Vjssel sector describing the ohmic coupling of the dipole components (m = 1) of
. {4

Jes o , is shown in Fig. 4.

Shell

Fig. 4: Resistance circuit model of a vessel sector
= M—— = toroidal resistance of bellows sector

O{b'fla
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;Qz S —L = poloidal resistance of bellows sector.

2 ‘db ‘ gb
For the vessel with A = 2.7 and the data of Table I, the following relations yield
2
pz 6710 R
== |——1 220 . < . < ’ <
R (26220, Ry <02/, R, <018, prs2.5
It can be deduced from Fig. 7 that }i’ylz) represents the most important current component

of all, therefore justifying the circuit model of Fig. 4. The quadrupole component of

)
)'% (m=2) only plays a negligible role for the vessel geometry of Fig. 1.

The magnetic flux change in the shell sector by ohmic coupling can be deduced from Fig. 4 as

-—-Z'Tg’ = (}:5, -%(ZQB +,Qg1 t /-?5-1) +'}:'2(R5,,+R52 )2:)';4 ‘Z'Rz =2'R4'J:4 (41)

and in the bellows sector as

"Z{lfé” = —}51'2(R1+g2)'+2'ﬁ4‘<}:430 since Cclliz > i([?’ (42)

using the relations )—;1 'ﬁz = }52 ) 'Qs and .}.4 R, = /?2 ; }.54 ‘

Only by ohmic coupling might the dipole current J‘/, remove an amount of magnetic flux Aﬂ

from each shell sector
A,g=2'p4')‘c‘f/~ T =~ 2X]0—3sand
which is much larger than the magnetic flux stored in it by the plasma current.

The two coupled eigenmodes of egs. (18) and (19) can be represented on the shell and

bellows sectors by the formula

—

bo( 0 RE)= 3 (R (4 R 2) 43)

The toroidal current component JV and the saddle current J'O, are connected by the

relations

; - <> —>
Wﬁ,b:—gﬁzyf;w (44)  and Z =5 . (45)
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Ly

on the shell or bellows surfaces. ¢ is a scalar quantity while §, s represented by a
symmetrical matrix which is transferred to a diagonal matrix, if a cylindrical system of

coordinates is chosen on the bellows surface:

7 i
- g) 7 o, 7 dbu
S === /0 4) 5, = 6 4 (46)
* O Loy

The currents on the bellows and shell surfaces are coupled by the boundary conditions along

the separation lines of the different vessel sectors

(t)E0 (Y )T

I

e
£ = tangential vector along the separation line
— :
. = normal vector on the vessel surface along the separation line (Fig. 3).
‘The continuity of B-,\ is valid owing to the strong ohmic coupling, and this relation is used

to consider the inductive coupling of the shell and bellows saddle currents, too.

The saddle currents are much smaller than the toroidal dipole component of the eddy currents,
and the magnetic energy stored by the toroidal currents is significantly larger than that

stored by the saddle currents.

The toroidal currents can therefore be calculated independently of the saddle currents, as

has already been shown analytically for a cylindrical geometry /4 /.

The calculation of the eddy currents can be divided into two steps. First the poloidal
distribution of the toroidal currents )‘q, is computed numerically by a method, described
in /1/ and /5/. The current distribution quf at any moment is used as input to eqs. (44),
(45), (46), (47) and (48) to derive the saddle currents on the shell and bellows sectors.

To calculate }? , an axisymmetric vessel was modelled with a cross-section and a poloidal
distribution of the toroidal resistance equal to those of the real vessel. The wall is divided
into 40 axisymmetric toroidal conductors, which are inductively coupled mutually and with

the plasma. Assuming a homogeneous distribution of the plasma current and no movement of
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the plasma during disruption, the current decay was simulated by suddenly increasing the

plasma resistance to a value high enough to get the desired current decay time ];,

As an example, Fig. 5 shows poloidal distributions of }Y on the upper vessel half for

A= 3.5, when the compressed plasma disrupts. Increasing the current decay time from

Tp = 10-5 sto Tp = 10—4 s only slightly diminishes the currents. To compare vacuum
vesselsfor plasmas with different aspect ratios, jfl/ was always computed at the moment ‘
when the maximum of the total toroidal eddy current appears in the vessel wall for a current

decay time Tp = 10-5 s of the compressed plasma.

In Fig. 6 the poloidal distributions of 4y are compared for A= 3.5 withl;of 2.4 % IO6 A

and A= 2.7 withI,. = 3.7 x 10" A, )'9, only increases by a small amount with decreasing 5

A since the poloidal circumference of the vessel increases with decreasing A, too.

The saddle currents on the shell and bellows elements were derived for the two plasma aspect
ratios A= 3.5 and A = 2.7 from the poloidal distributions of J'-?, shown in Fig. 6. Using

a cylindrical system of coordinates on the bellows surfaces and a toroidal system of
coordinates on the shell surfaces (Fig. 3), the ..¥ - components of the saddle currents

were written as

(V)

W) ,
ys = b ) ;’ /- _g; (49)

W)W 2z
1= e 101~ % ) (50

The .} - components of the saddle currents are antisymmetric to the vertical symmetry plane
of each shell and bellows sector and a linear dependence in the Y or Z direction seems

to be a good approximation for the vessel with N = 16.

Inserting eqs. (49) and (50) in eqs. (44), (45), (46), (47) and (48), the s components of

the saddle currents can be derived
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The ¥ and Z - components of the saddle currents do not appear in eqgs. (51) and (52) since
the h component is much larger. The term proportional to 7 ho dominates and

)
represents the influence of the dipole current ‘h/ (m = 1) on the bellows surface.

Figure 8 shows I,,} for A=3.5and A=2.7.

c) Electromagneticloads on the Vessel

The eddy currents on the vessel interact mutually and with the toroidal and vertical magnetic
fields. A distinction can be made between loads that are axisymmetric and those being anti-
symmetric to the vertical symmetry planes of each shell and bellows sector. The axisymmetric
forces can be divided into three components caused by

- mutual interaction of the toroidal eddy currents j‘f

- interaction of the vertical magnetic field with jr,',

- interaction of the toroidal magnetic field with the diamagnetic eddy currents.

These are shown in Fig. 9 for A= 2.7 being divided into two poloidal components tangential
and normal to the vessel surface. In Fig. 10 the total axisymmetric loads for two different
aspect ratios A= 3.5 and A= 2.7 are compared. The loads p2,, , normal to the vessel
surface, increase slightly with decreasing A, while the tangential components p; decrease

with A.
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The forces antisymmetric to the vertical symmetry planes of the vessel are caused by the
interaction of the toroidal magnetic field with the poloidal components of the saddle
currents. Figure 11 shows the poloidal distributions of these tilting forces for A= 3.5 and
CA=2.7.

As an important result the tilting forces decrease with decreasing plasma aspect ratio A.

The poloidal component of the saddle current in the shell sector J; is nearly proportional
to the ratio of the shell thickness ds and the equivalent thickness in the toroidal direction

of the bellows sections of,,, since

Q 4 ) >
U{bu ’N dé /Q J\! -
The saddle currents cnd fllhng forces on the shell sectors will increase by a factor of nearly

two if a vessel with single-walled bellows sections is used instead ot one with double-walled |
bellows, while the saddle currents and tilting forces on the bellows will remain almost

unchanged. But the mechanical stresses in the single-walled bellows will be doubled.

1V. Conclusions

It would be desirable to derive analytical scaling laws for the electromagnetic loads on the
vessel and the mechanical stresses caused by them as a function of the aspect ratio A of the | 1

compressed plasma.

It is therefore necessary to know the variation of the plasma parameters with A, which can

be deduced from the following physical constraints: |

1. Condition for alpha particle confinement

54
T A=coust =ty 4l
2. Condition forignition
i :
a'Bn'ﬂ ’(0u57‘=(3 (55)

3. Stability

%: const=C, (56) and 7Q=59M57L (57)
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The dependence of the plasma parameters on A can be written as )

B Y/ o (s )
e % ! € G g

B’_‘; = toroidal magnetic field on the plasma axis,

(58)

L.=¢, /—,\Z (59)

I,-oe = plasma current

,R 2
a=Le . LG T (60)
Lz o A
Q = plasma minor radius
16 (61)
BV /V.’O'C'z

BV = vertical magnetic field,

and the dependence of the poloidal circumference of the vacuum vessel on A can be

)

approximated by-H-
Z/O = g,gc — g/ﬂ4 ' A (62)

Assuming a hard disruption of the plasma current, the maximum toroidal eddy current
reaches the value of the plasma current, and the most critical electromagnetic loads

will occur.

For a hard disruption the scaling laws for these loads can easily be derived:
Axisymmetric loads caused by :

mutual interaction of toroidal eddy currents

a

Pl g2 AT

(©3)

*) Approximation for large aspect ratios

) Eor A > 2




-18 -

-
where L = force per unit areq;

interaction between toroidal eddy currents and the vertical field

P (A) =

diamagnetism

- (64)
A(é'/dc_elo1 ’A)

};:(/J) = Qy» M.—ACMQ) ©5) Or =wust(A) (4 :%
Loads, antisymmetric to the vertical symmetry planes (tilting forces):

PUA =y (by-bpriA) )
Applying the scaling laws for the electromagnetic loads (eqgs. (63) to (66)) to the case
A = 2.7 the single forces agree within 20% with the calculated ones, while the sum of
the axisymmetric loads differs by about 50% from the exact one. This result becomes |
clear from Fig. (9 ) which shows the whole axisymmetric load to be mainly composed

of two contrary forces.

Since the dependence of the vessel geometry on A can only be considered very roughly,

these scaling laws cannot be very accurate.

It will therefore not be possible by using the scaling laws to determine the mechanical
stresses in the vessel as a function of A. For every plasma aspect ratio, the electromagnetic
loads and the mechanical stresses must be calculated by considering the vessel geometry

in detail.

V. Stress Analysis

The electromagnetic forces due to plasma disruption produce the greatest mechanical stress
on the Zephyr vacuum vessel, thus governing its reliability and lifetime. As their intensity,
distribution and time development strongly depend on the vessel concept and material,

development of the vacuum vessel can only be accomplished in steps.

The stress analysis performed described here was preceded by two steps of this iteration
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process which yielded the following results:

- Designing the vacuum vessel as a self-supporting, 1 cm thick toroidal shell with
two insulating gaps is ruled out owing to the extremely high shear and compression
stresses on the electrical insulation (up to 800 MPa) /1 /. The only possibility of
reducing these stresses would be to increase the distance between the TF coils and
plasma from 9 to 20 cm, thus altering the parameters of the experiment. A vessel
without electrically insulating gaps would have to be about 1.5 mm thick to attain
the minimum toroidal resistance of 1 m {2 required.

This is not compatible with the functional requirements imposed on the vacuum vessel

such as NI ports, heat shield, tritium permeation, installation, etc..

- A compromise is afforded by the structure composed of bellows and shell sections. Here
the toroidal electrical resistance is essentially governed by the bellows, and the mecha-
nical rigidity of the vessel by the shell section. As the strength analysis shows, the
single-walled shell sections (H profile) are not sufficiently rigid and their strong

deformation causes unacceptably high bending stresses (up to 740 MPa).

The shell sections were therefore made double-walled (Fig. 12) and linked at several parts
to the TF magnet (Fig.13) and their rigidity was adapfed as much as possible to the stress
(Fig. la ). The electromagnetic forces determined in Sec. IV (Fig. 14) were distributed
half and half on the two vessel walls. If the atmospheric pressure is taken into account, the

load on the outer wall is slightly higher.

The calculation model for the stress analysis was a FE mesh comprising 615 shell

elementsand 651 nodes, each with 5 degrees of freedom (Figs. 15 and 16 ). The analysis
was performed statically, linearly and without including other electromagnetic, thermal
and gravitational loads. In keeping with the different boundary conditions for symmetry
and antisymmetry the calculations were done separately and then the stress tensors were

added and plotted as reference stress (von Mises):

4
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and for the two-dimensional stress state:

7
Sop (36604667 37,2 ] ( 8)
From the stress distributions over the poloidal circumference (Fig. 17 ) and toroidal arc
(Fig. 18 ) it can be seen that the shell sections have dimensions that provide sufficient
rigidity and are very evenly loaded. The references taken were the max . permissible stresses
according to ASME, Sm (for membrane) and 1.5 Sm (for membrane + bending), and the yield
stress 0’0.201" the design material Inconel 625. The bellows, however, are too highly

stressed in their slightly curved region, which is where the maximum load is exerted.
Conventions used for stress calculations are shown in Fig. 19.

As Fig. 18 shows, the two loads produce roughly equal stresses although the tilt forces are
about four times as high in intensity as the symmetric forces. However, they act very locally
and essentially produce shear stresses (which are uncritical), but not bending stresses.

Figure 16 illustrates the type of deformation and gives its maximum values separately

for the two types of load.

The foregoing results yield the following new aspects affecting the vessel concept:

- reduction of tilt forces by increasing the number of bellows and/or decreasing
bellows width

-  increase of bellows thickness from 2 to 2.5 mm (smaller toroidal electrical
resistance)

- additional support in centre of bellows (only possible with inner or single-walled
bellows)

= strong curvature of bellows in flat region (adaptation of bellows to the outer contour
of the shell section, difficult remote handling of the octant joint)

- welding seams (joining the octants) have to be shifted from the centre of the bellows
to the edge (genuinely modular construction not possible, but in halves that can
readily be separated)

- all jointsin the bellows section have to be full penetration welds (avoidance of stress

concentration).




=i

Which of these features are applied to reduce the stresses in the bellows in the fourth
stage of development of the vacuum vessel for ZEPHYR will ultimately depend on their

compatibility with the functional requirements.
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T:TF-coil, P: PF-coil ; ¢:copper shell ; J:insulating breaks |
Br: toroidal magnetic field’on axis of compressed plasma |

Joi: plasma current; Ry :toroidal resistance of the vacuum vessel
A :distance plasma- coil

Table I : Comparison of vacuum vessels
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Before compression after compression
plasma | A5 | A27 | A35 | A27
minor radius| 437cm | 572cm | 36 cm 46.7¢cm
major radius| 185.2cm | 189 cm 126cm 126 cm
Table IIT

TF-Magnet Support

Structure

Neutral Beam
Duct

Fig. la:  Vertical section of the vacuum vessel and TF-magnet
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Isometric view of the FE-mesh for stress analysis
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Fig. 19:  Conventions used for stress and magnetic load calculations
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